From discretization to regularization of composite discontinuous functions

نویسندگان

  • Tareg M. Alsoudani
  • Ian David Lockhart Bogle
چکیده

Discontinuities between distinct regions, described by different equation sets, cause difficulties for PDE/ODE solvers. We present a new algorithm that eliminates integrator discontinuities through regularizing discontinuities. First, the algorithm determines the optimum switch point between two functions spanning adjacent or overlapping domains. The optimum switch point is determined by searching for a “jump point” that minimizes a discontinuity between adjacent/overlapping functions. Then, discontinuity is resolved using an interpolating polynomial that joins the two discontinuous functions. This approach eliminates the need for conventional integrators to either discretize and then link discontinuities through generating interpolating polynomials based on state variables or to reinitialize state variables when discontinuities are detected in an ODE/DAE system. In contrast to conventional approaches that handle discontinuities at the state variable level only, the new approach tackles discontinuity at both state variable and the constitutive equations level. Thus, this approach eliminates errors associated with interpolating polynomials generated at a state variable level for discontinuities occurring in the constitutive equations. Computer memory space requirements for this approach exponentially increase with the dimension of the discontinuous function hence there will be limitations for functions with relatively high dimensions. Memory availability continues to increase with price decreasing so this is not expected to be a major limitation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computing Green’s Functions for Flow in Heterogeneous Composite Media

Green’s functions lie at the foundation of many uncertainty quantification and uncertainty reduction techniques (e.g., the moment differential equation approach, parameter and/or source identification, and data assimilation). We discuss an accurate and numerically efficient approach to compute Green’s functions for transport processes in heterogeneous composite media. We focus on elliptic parti...

متن کامل

Adaptive discontinuous Galerkin methods for state constrained optimal control problems governed by convection diffusion equations

We study a posteriori error estimates for the numerical approximations of state constrained optimal control problems governed by convection diffusion equations, regularized by Moreau-Yosida and Lavrentiev-based techniques. The upwind Symmetric Interior Penalty Galerkin (SIPG) method is used as a discontinuous Galerkin (DG) discretization method. We derive different residual-based error indicato...

متن کامل

Additive Average Schwarz Methods for Discretization of Elliptic Problems with Highly Discontinuous Coefficients

A second order elliptic problem with highly discontinuous coefficients has been considered. The problem is discretized by two methods: 1) continuous finite element method (FEM) and 2) composite discretization given by a continuous FEM inside the substructures and a discontinuous Galerkin method (DG) across the boundaries of these substructures. The main goal of this paper is to design and analy...

متن کامل

Time-Discontinuous Finite Element Analysis of Two-Dimensional Elastodynamic Problems using Complex Fourier Shape Functions

This paper reformulates a time-discontinuous finite element method (TD-FEM) based on a new class of shape functions, called complex Fourier hereafter, for solving two-dimensional elastodynamic problems. These shape functions, which are derived from their corresponding radial basis functions, have some advantages such as the satisfaction of exponential and trigonometric function fields in comple...

متن کامل

hp-Version Composite Discontinuous Galerkin Methods for Elliptic Problems on Complicated Domains

In this paper we introduce the hp–version discontinuous Galerkin composite finite element method for the discretization of second–order elliptic partial differential equations. This class of methods allows for the approximation of problems posed on computational domains which may contain a huge number of local geometrical features, or micro-structures. While standard numerical methods can be de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computers & Chemical Engineering

دوره 62  شماره 

صفحات  -

تاریخ انتشار 2014